Jie Ren

Computational Biology and Bioinformatics; Machine learning; Statistical Modeling

Google Scholar Twitter Github 

E-mail: jie dot ren dot usc (at) gmail.com

 

I am a Senior Research Scientist in Google DeepMind (formerly Google Brain). Previously, I received my PhD in Computational Biology and Bioinformatics, as well as MSc in Statistics, from the University of Southern California. My research interests span three key areas: (1) out-of-distribution (OOD) detection in deep learning, (2) uncertainty and robustness of large models, and (3) the development of reliable machine learning and statistical modeling methods for real-world application, with a special interest in biological and medical studies. My long-term goal is to develop trustworthy AI solutions that can be safely deployed in real-world scenarios, helping to advance scientific discoveries and improve the well-being of humanity.

News

Publications

Out-of-Distribution Detection in Deep Learning

Yunhao Ge*, Jie Ren*, Jiaping Zhao, Kaifeng Chen, Andrew Gallagher, Laurent Itti, Balaji Lakshminarayanan.

Presented at the ICML workshop on Knowledge and Logical Reasoning in the Era of Data-driven Learning  (2023). [paper]   

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan, Peter J. Liu.

ICLR (2023). [paper] [poster] [slides]

Jeremiah Zhe Liu*, Shreyas Padhy*, Jie Ren*, Zi Lin, Yeming Wen, Ghassen Jerfel, Zack Nado, Jasper Snoek, Dustin Tran, and Balaji Lakshminarayanan.

Journal of Machine Learning Research 23 (2022): 1-63. [paper]

Xin Bai, Jie Ren, Fengzhu Sun.

Journal of Molecular Biology (2022).  [paper][slides]

Stanislav Fort*, Jie Ren*, and Balaji Lakshminarayanan.

NeurIPS (2021).  [paper]

Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy, and Balaji Lakshminarayanan.

Presented at the ICML workshop on Uncertainty and Robustness in Deep Learning (2021). [paper] [poster] [code]

Abhijit Guha Roy*, Jie Ren*, Shekoofeh Azizi, Aaron Loh, Vivek Natarajan, Basil Mustafa, Nick Pawlowski et al.

Medical Image Analysis 75 (2022): 102274. [paper] [blog]

Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu, Jasper Snoek, and Balaji Lakshminarayanan.

Presented at the ICML workshop on Uncertainty and Robustness in Deep Learning (2020).  [paper]

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo, Joshua V. Dillon, and Balaji Lakshminarayanan.

NeurIPS (2019). [paper] [code] [poster] [3-minute video] [blog] 

Uncertainty and Robustness in Deep Learning

Jie Ren, Yao Zhao, Tu Vu, Peter J. Liu, and Balaji Lakshminarayanan.

Presented at NeurIPS workshop on I Can’t Believe It’s Not Better! (ICBINB). [paper]

Chen, Xinyun, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash, Charles Sutton, Xuezhi Wang, and Denny Zhou.

arXiv preprint arXiv:2311.17311 (2023).[paper]

Polina Zablotskaia, Du Phan, Joshua Maynez, Shashi Narayan, Jie Ren, Jeremiah Liu.

EMNLP Findings (2023). [paper]

Kundan Krishna, Yao Zhao, Jie Ren, Balaji Lakshminarayanan, Jiaming Luo, Mohammad Saleh, Peter J. Liu.

EMNLP Findings (2023). [paper]

James Urquhart Allingham*, Jie Ren*, Michael W Dusenberry, Jeremiah Zhe Liu, Xiuye Gu, Yin Cui, Dustin Tran, Balaji Lakshminarayanan.

ICML (2023). [paper]

Benoit Dherin, Huiyi Hu, Jie Ren, Michael W. Dusenberry, and Balaji Lakshminarayanan.

Presented at the ICML workshop on Structured Probabilistic Inference and Generative Modeling. [paper]

Yunhao Ge*, Jie Ren*, Yuxiao Wang, Andrew Gallagher, Ming-Hsuan Yang, Laurent Itti, Hartwig Adam, Balaji Lakshminarayanan, Jiaping Zhao.

CVPR (2023). [paper]

E Kelly Buchanan, Michael W Dusenberry, Jie Ren, Kevin Patrick Murphy, Balaji Lakshminarayanan, Dustin Tran.

Presented at the NeurIPS Workshop on Distribution Shifts (2022). [paper]

Dustin Tran, Jeremiah Liu, Michael W Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim GJ Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan.

arXiv preprint arXiv:2207.07411 (2022).  [paper]

Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael W. Dusenberry, Sebastian Farquhar, Angelos Filos et al.

Presented at the NeurIPS workshop on Bayesian deep learning (2021). [paper]

Peter J. Liu, Yu-An Chung, and Jie Ren.

arXiv preprint arXiv:1910.00998 (2019). [paper]

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V. Dillon, Balaji Lakshminarayanan, and Jasper Snoek.

NeurIPS (2019).  [paper] [code] [poster] [blog]    

 

Machine Learning in Biological Sciences

Bai Xin, Jie Ren, Yingying Fan, and Fengzhu Sun.

Bioinformatics 37.6 (2021): 759-766. [paper] 

Jie Ren*, Kai Song*, Chao Deng, Nathan A. Ahlgren, Jed A. Fuhrman, Yi Li, Xiaohui Xie, Ryan Poplin, and Fengzhu Sun.

Quantitative Biology (2020): 1-14. [paper] [code]

Weili Wang*, Jie Ren*, Kujin Tang, Emily Dart, Julio Cesar Ignacio-Espinoza, Jed A. Fuhrman, Jonathan Braun, Fengzhu Sun, and Nathan A. Ahlgren.

NAR Genomics and Bioinformatics 2.2 (2020): lqaa044. [paper] [code]

Pei Chen, Shuo Li, Wenyuan Li, Jie Ren, Fengzhu Sun, Rui Liu, and Xianghong Jasmine Zhou.

Journal of Translational Medicine 18.1 (2020): 1-10. [paper]

Kujin Tang, Jie Ren, and Fengzhu Sun.

Genome Biology 20.1 (2019): 1-17. [paper]

Zifan Zhu, Jie Ren, Sonia Michail, and Fengzhu Sun.

Genome Biology 20.1 (2019): 1-13. [paper]

Nathan A. Ahlgren*, Jie Ren*, Yang Y. Lu, Jed A. Fuhrman, and Fengzhu Sun.

Nucleic Acids Research 45.1 (2018), 39-53. [paper] [code]

Ying Wang, Lei Fu, Jie Ren, Zhaoxia Yu, Ting Chen, and Fengzhu Sun.

Frontiers in Microbiology 9 (2018): 872. [paper]

Jie Ren*, Nathan A. Ahlgren*, Yang Young Lu, Jed A. Fuhrman, and Fengzhu Sun.

Microbiome 5.1 (2017): 1-20. [paper] [code] [R package] [news]

Mengge Zhang, Lianping Yang, Jie Ren, Nathan A. Ahlgren, Jed A. Fuhrman, and Fengzhu Sun.

BMC Bioinformatics 18.3 (2017): 143-154. [paper]

Statistical Modeling in Genomics Data

Shaokun An, Jie Ren, Fengzhu Sun, and Lin Wan.

Journal of Computational Biology (2022). [paper]

Lin Wan, Xin Kang, Jie Ren, and Fengzhu Sun.

Quantitative Biology 8 (2020): 143-154. [paper]

Chao Deng, Timothy Daley, Peter Calabrese, Jie Ren, and Andrew D. Smith.

Journal of Computational Biology 27.7 (2020): 1130-1143. [paper]

Kai Song, Jie Ren, and Fengzhu Sun.

Frontiers in Genetics 10 (2019): 1156. [paper]

Jie Ren, Xin Bai, Yang Young Lu, Kujin Tang, Ying Wang, Gesine Reinert, and Fengzhu Sun.

Annual Review of Biomedical Data Science 1 (2018): 93-114. [paper]

Kujin Tang, Jie Ren, Richard Cronn, David L. Erickson, Brook G. Milligan, Meaghan Parker-Forney, John L. Spouge, and Fengzhu Sun.

BMC Genomics 19.1 (2018): 1-16. [paper]

Nusbaum, David J., Fengzhu Sun, Jie Ren, Zifan Zhu, Natalie Ramsy, Nicholas Pervolarakis, Sachin Kunde et al.

FEMS Microbiology Ecology 94.9 (2018): fiy133. [paper]

Xin Bai, Kujin Tang, Jie Ren, Michael Waterman, and Fengzhu Sun.

BMC Genomics 18.6 (2017): 19-30. [paper]

Yang Y. Lu, Kujin Tang, Jie Ren, Jed A. Fuhrman, Michael S. Waterman, and Fengzhu Sun.

Nucleic Acids Research 45.1 (2017): W554-W559. [paper]

Weinan Liao*, Jie Ren*, Kun Wang, Shun Wang, Feng Zeng, Ying Wang, and Fengzhu Sun.

Scientific Reports 6.1 (2016): 37243. [paper]

Jie Ren, Kai Song, Minghua Deng, Gesine Reinert, Charles H. Cannon, and Fengzhu Sun.

Bioinformatics 32.7 (2016): 993-1000. [paper]

Kai Song, Jie Ren, Gesine Reinert, Minghua Deng, Michael S. Waterman, and Fengzhu Sun.

Briefings in Bioinformatics 15.3 (2014): 343-353. [paper]

Jie Ren, Kai Song, Fengzhu Sun, Minghua Deng, and Gesine Reinert.

Bioinformatics 29.21 (2013): 2690-2698. [paper]

Kai Song, Jie Ren, Zhiyuan Zhai, Xuemei Liu, Minghua Deng, and Fengzhu Sun.

Journal of Computational Biology 20.2 (2013): 64-79. [paper]

Bai Jiang*, Kai Song*, Jie Ren*, Minghua Deng, Fengzhu Sun, and Xuegong Zhang.

BMC Genomics 13.1 (2012): 1-17. [paper]

Talks

Education

Industrial Experience

Mentorship and Community